Supervised Learning of Semantic Relatedness
نویسندگان
چکیده
We propose and study a novel supervised approach to learning statistical semantic relatedness models from subjectively annotated training examples. The proposed semantic model consists of parameterized co-occurrence statistics associated with textual units of a large background knowledge corpus. We present an efficient algorithm for learning such semantic models from a training sample of relatedness preferences. Our method is corpus independent and can essentially rely on any sufficiently large (unstructured) collection of coherent texts. Moreover, the approach facilitates the fitting of semantic models for specific users or groups of users. We present the results of extensive range of experiments from small to large scale, indicating that the proposed method is effective and competitive with the state-of-the-art.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملSemantic Sort: A Supervised Approach to Personalized Semantic Relatedness
We propose and study a novel supervised approach to learning statistical semantic relatedness models from subjectively annotated training examples. The proposed semantic model consists of parameterized co-occurrence statistics associated with textual units of a large background knowledge corpus. We present an efficient algorithm for learning such semantic models from a training sample of relate...
متن کاملThe Duluth lexical sample systems in Senseval-3
Two systems from the University of Minnesota, Duluth participated in various SENSEVAL-3 lexical sample tasks. The supervised learning system is based on lexical features and bagged decision trees. It participated in lexical sample tasks for the English, Spanish, Catalan, Basque, Romanian and MultiLingual English-Hindi data. The unsupervised system uses measures of semantic relatedness to find t...
متن کاملA Supervised Learning Approach to Automatic Synonym Identification Based on Distributional Features
Distributional similarity has been widely used to capture the semantic relatedness of words in many NLP tasks. However, various parameters such as similarity measures must be handtuned to make it work effectively. Instead, we propose a novel approach to synonym identification based on supervised learning and distributional features, which correspond to the commonality of individual context type...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012